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Abstract

A hybrid numerical method (HNM) is presented for analyzing transient waves in a cylinder made of functionally
graded material (FGM). In the HNM, the FGM cylinder is divided into N cylindrical elements with three-nodal line in
the wall thickness. The elemental material properties are assumed to vary linearly in the thickness direction to better
model the spatial variation of material properties of FGM. The Hamilton variational principle is used to develop
governing equations of the cylinder. The displacement responses are determined by employing the Fourier transfor-
mations together with the modal analysis. The HNM is applied to analyze a number of FGM cylinders, and its effi-
ciency is demonstrated. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The mechanical properties of cylindrical structures made of functionally graded material (FGM) vary
continuously in the macroscopic sense from one surface to the other. This is achieved by gradually varying
the volume fraction of the constituent materials in the manufacturing process. The advantage of FGMs is
that they are able to withstand high-temperature-gradient environments while maintaining their structural
integrity. In the application of FGM cylindrical structures to aerospace, nuclear and automobile industries,
analyses of transient waves in FGM cylinders are of great importance.

There have been many works on wave propagation problems related to composite cylindrical shells.
Mirsky (1964) and Nowwinski (1967) solved for axially symmetric waves in orthotropic shells. Chou and
Achenbach (1981) provided a three-dimensional solution for orthotropic shells as well. Yuan and Hsieh
(1998) proposed an analytical method for the investigation of free harmonic wave propagation in laminated
shells. Nayfeh (1995) discussed scattering of horizontally polarized elastic waves from multilayered an-
isotropic cylinders embedded in isotropic solids. However, studies on the transient responses of FGM shells
have not been found in the literature.
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As the material properties of FGM change with the structural thickness, wave propagation problems
related to the FGM are generally difficult to analyze without resorting to numerical approaches. There have
been methods proposed for wave propagation problems of FGM plates. Liu et al. (1991a) and Liu and Tani
(1992) used strip element method to deal with an FGM plate. Ohyoshi et al. (1996) proposed an analytical
method and obtained wave reflection and transmission coefficients for an FGM plate. Recently, Liu et al.
(1999a) proposed a method for analyzing stress waves in FGM plates. The results show that the variation of
material properties can be approximated with piecewise linear functions.

This paper presents a hybrid numerical method (HNM), which combines the finite element method with
the Fourier transformation method. The concept of the HNM was originally proposed by Liu et al. (1991b)
for treating transient waves in anisotropic laminated plates. The HNM concept is extended in this paper to
cylinders made of FGM. In the HNM, the FGM cylinder is divided into layered cylindrical elements in the
thickness direction. The HNM is also formulated to accommodate a linear variation of material properties
in an element in the thickness direction. The Hamilton variational principle is used to develop governing
equations of the cylinder. The displacement response is determined by employing the Fourier transfor-
mations and the modal analysis. The HNM can reduce the number of elements and obtain more accurate
results. This method is applied to a number of FGM cylinders. First, the displacement responses of a SiC-C
plate are computed and the results are compared with those obtained by existing methods. Next, the
displacement responses of FGM cylinders excited by an incident wave of one cycle of sine function are
calculated, and some interesting results are obtained.

2. Formulation

Consider an FGM cylinder with varying material properties in the thickness direction. The thickness,
inner radius and outer radius of the cylinder are denoted by H, R;, R,, respectively, as shown in Fig. 1. Let x
and z denote, respectively, the axial and radial coordinates. The cylinder is subjected to a radial line load of
q = qod(x)f(¢) uniformly distributed along the circumferential direction, where 6 is the Dirac delta func-
tion, and f'(¢) is a function of the time. Because the geometry of the cylinder and the load are independent
of the circumferential direction, the problem is axisymmetric.

In the case of axisymmetry, the strain—displacement relations are given by

¢=LU, (1)

wheree=[e, & & & ]T is the vector of strains, U = [u W]T is the vector of displacements, u and w are
the displacements in the axial and radial directions, respectively, and L is the operator matrix given by

a g o 2717
L= L9 | )

Ri+z oz ox

The operator matrix L can be rewritten as

1 0 0 0 0 0
0 0 1 0 0] 0 0 0] 0 0 1 1
L=L—+L —+L;—= _ - 3
2 TRz o ol Tlo 1|aTlo o|R Tz (3)
0 1 1 0 0 O

where the radial coordinate is decomposed as R; +z. It is assumed that the material is transversely iso-
tropic, and the stresses are related to strains by

o = cg, 4)

T . . . . .
where 6 = [0, 06y 0. 0,] is the vector of stresses and c is the matrix of material constants given as
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Fig. 1. An FGM cylinder and its nth isolated element.
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The stresses acting on a surface can be written as
R. = L;cLU. (6)
Finally, the initial conditions of the cylinder are given by
Ul = Ult:O =0, (™)

T2

where represents the differentiation with respect to time.

The cylinder is divided into N layered cylindrical elements. The thickness and inner radius of the nth
element are denoted by 4, and r,, respectively. It can be found that the outer radius of the nth element is
equal to r, + h,. The elastic coefficient matrix and the mass density on the inner and outer surfaces of the
nth element are denoted by ¢! = ()} (i,j =1,2,3,4), pl, ¢© = (¢;})° (i,j = 1,2,3,4) and p? respectively,

n
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as shown in Fig. 1, where the superscripts ‘I’ and ‘O’ respect the inner and outer surface, respectively. It is
assumed that the material properties of the nth element change linearly in the thickness direction:

z e

Cn = (cno - CL) h, + c:, = AcijZ + (Cz!j>n’ (8)

z

P =P = p) 5t Py =Dp 2+ p, )
We approximate the displacement field within an element as

U = Nd, (10)
where N is the shape function matrix of second order given by

N = [(1 — 3z 4 22°)E4(z — Z)E(2Z* — 2)E]. (11)

Here, E is a 2 x 2 identity matrix and z = z/h,, and d is the displacement amplitude vector at z =0,
z=10.5h, and z = h, as follows:

d=[d" ' d4']". (12)

A governing equation of the element follows from the Hamilton variational principle, which takes the
form

/ﬂ&V—nm:o. (13)

]

Here, the time #, and ¢, are arbitrary, J and T are the potential energy and kinetic energy of the element,
respectively. The potential energy of the element in the absence of body force is given by

I
V= n/ e'o(r +z)dz — 2nwqR,. (14)
0
The kinetic energy of the element is expressed in terms of the displacement vector as
h T
»oU" oU
T= — dz.
Tc/o 5 A p(r+z)dz (15)

Substituting Egs. (14) and (15) into Eq. (13), and taking variation with respect to U leads to the following
governing ordinary differential equations of the element:

q=Md +Kpd, (16)
where the dot represents the derivative with respect to the time, and
d? d
KD:*BZ@JrBlaﬂLB(L (17)

The subscript ‘D’ denotes that K is a differential operator matrix, and

B, = A, + A, (18)
B, = A +Af, (19)
By = Ag + A, (20)

M =M + M,. (21)
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The matrices A; (i =0,1,2), M and q are given by Xi et al. (1999), if the density and the elastic coef-
ficients on the inner surface of the element are used as constants. The matrices My and A (i = 0, 1,2) are
the additional matrices for the variation of the density and the elastic coefficients in the elemental thickness
direction, and are given by

I TONT 0N ON  ONT z
d __ S 1 TV 2 / Ty
A 7/0 { 5 Dig (nt2)z+ <N ~+ % N)zD5 +N D()Nrn +Z}dz, (22)
hy T T
Al = / Kz%DgN - %D’Z”N - NTD;”%—T) (o +2)z + 2N"DNz — ZNTDZ'NZ} dz, (23)
0
hy
Al = / N'D|N(r, + z)zdz, (24)
0
hy
M¢ = / N'Ap,N(r + z)zdz. (25)
0

The expressions for matrices A (i = 1,2), My and D}, D}, D, D, D;, D}, D/, D} are given in Ap-
pendix. As can be seen from Eq. (16), the original partial differential equations of the cylinder with three
variables (x, y, f) have simplified to a system of ordinary differential equations by the above procedure.

Assembling all the elements, a system of approximate differential equations for the whole cylinder may
be expressed as

q, = Md, + Kp d,, (26)
where
d? d
KD[ = —le @ + Bll a + BOL' (27)

In these equations, the subscript t* denotes matrices or vectors for the whole cylinder. The matrices
B (i =0,1,2), M, and the vectors q, and d, can be obtained by assembling the corresponding matrices and
vectors of adjacent elements. The sizes of d, and q, are M x 1, and the sizes of the matrices M, and B; are
M x M, where M = 2(2N + 1).

We introduce the Fourier transformations with respect to the axial coordinate x in the form

d(k, ) = / "l e d, (28)

where i = v/—1, and the real transformation parameter k is the wave number corresponding to the axial
coordinate x. The application of the Fourier transformations indicated by Egs. (26)—(28) leads to

q = Mt&l + Kt&ta (29)

where d and q, are the Fourier transformations of d and q,, respectively, and K; is the stiffness matrix given
by
K, = K*By + ikBy, + By (30)
From Appendix and the work of Xi et al. (1999), we can see that M, By, By, are symmetric, and By, is
antisymmetric. Hence K, is a Hermitian matrix typically.

The modal analysis is used to obtain the Fourier transformation of the displacement vector. Solving the
following eigenvalue equation corresponding to Eq. (29),
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0 = [K, — o®M|, (31)

we can get the eigenfrequencies ,, (m = 1,2,3...M) and the corresponding right eigenvectors ¢. For a
time-step impact load, we can give the displacement in the Fourier transformation domain following the
method given by Liu et al. (1991b):

M Ly R
< 0,89, (1 — cos wyl)
di(k,f) =) oot : (32)
powr WM,

where ,,, e} and ¢k are the mth eigenfrequency and the corresponding right and left eigenvectors, and
M, = M, (33)

Taking the inverse Fourier transformation, the displacement response in the space-time domain can be
expressed by

+oo )
di(x, t):% / d,(k, £)e~* dk. (34)

o]

The integration in Eq. (34) can be carried out by using the fast Fourier transform (FFT) techniques (Liu
etal., 1991b; Liu and Tani, 1994; Liu and Lam, 1999c¢). Techniques (Liu et al., 1995, 1997) for treating wave
field in a laminated composite are here used to improve the efficiency in calculating the displacement re-
sponse.

3. Material properties of functionally graded material cylinder

Generally, a mixture of ceramic and metal is used to produce FGM. The property of the combined
materials can be expressed as

P:(T,z) = mei(T) Vini (2), (35)

where Pr is the effective material property of the FGM, P,,;, the temperature-dependent property of the ith
material, V,;, the volume fraction of the ith material, z, the coordinate in the thickness direction and T, the
temperature. The FGM is often used in high-temperature environment and may possess temperature-
dependent properties. The property for each material P,,;(T) in Eq. (35) can, therefore, be expressed in the
form of (Touloukian, 1967)

Pmt(T)=P0<1%+1+P1T+P2T2+P3T3>» (36)
where pjy is the constant appearing in the cubic fit of the material property with temperature, and p_, p1, ps,
ps are the coefficients of 7!, T, 7%, T3, respectively, obtained after factoring out p, from the cubic curve fit
of the property. The material properties are expressed in this way so that the higher order effects of the
temperature on material properties would be readily discernible.

The volume fraction V,,;(z) is a spatial function and the sum of the volume fractions of all the constituent
materials makes 1, i.e.

ZVm,.(z) =1. (37)

The simple power law exponent of volume fraction distribution is used to provide a measure of the
amount of the ith material in the FGM.
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For a mixture of two materials at the kth lamina, the effective material property of FGM can be ex-
pressed as

PE(T.2) = Py (T)V,1(2) + Poo(T)V,5(2). (38)

ml

For the kth lamina containing two constituent materials, Young’s modules Ef, Poisson ratio vk and
density p% can be obtained from Eq. (38) as follows:

Ep = E\V (@) + (1 - (2), (39)
Ve =1 (@) +a(1 = V), (40)
pr = piVi(2) + p5(1 = V(2). (41)

Four types of FGM cylinders are configured by Gong et al. (1999). They are all composed of stainless
steel and silicon nitride. Types 1 and 2 FGM cylinders are single-layer shells. The former has stainless steel
on its outer surface and silicon nitride on its inner surface, while the latter has silicon nitride on its outer
surface and stainless steel on its inner surface. Types 3 and 4 FGM cylinders are two layers of FGM
cylinders. Type 3 has silicon nitride on its outer and inner surfaces and stainless steel on its middle surface.
Type 4 has stainless steel on its outer and inner surfaces and silicon nitride on its middle surface. The
material properties for stainless steel and silicon nitride are listed in Table 1 (Touloukian, 1967).

For types 1 and 2 FGM cylinders, the volume fraction can be expressed as

z z

Vo (2) = (ZY’ Via(z) =1 = (ZY z € [0,h], (42)

where n is the power law exponent. The value of n is determined by optimization for minimum uniform
stress across the thickness. For type 1 FGM cylinder, V;,; represents the volume fraction of stainless steel
and ¥, represents the volume fraction of silicon nitride. For type 2 FGM cylinder, ¥}, stands for the
volume fraction of silicon nitride and V,,,, the volume fraction of stainless steel. Thus, the variation of
volume fraction for type 2 cylinder with radial position z in the thickness direction is in contrast with that of
type 1 FGM cylinder.

For types 3 and 4 FGM cylinders with two layers, the volume fraction can be expressed as

Vo (2) = (%) V) =1- (%) 2 € [0,0.5%], (43)
Vai(2) = (22}1_}1)”7 Vi(z)=1- (2zh—h>” z € [0.5h, A). (44)

Table 1
Material properties of stainless steel and silicon nitride FGM (Touloukian, 1967)
Coefficients Stainless steel Silicon nitride
E (GPa) v p (kg/m®) E (GPa) v p (kg/m?®)
) 201.04 0.3262 8166 348.43 0.24 2370
P, 0 0 0 0 0 0
P 3.079 x 10713 -2.002x10™* 0 —3.07 x 10713 0 0
P, —6.534 x 10716 3.97 x 1077 0 2.160 x 10716 0 0
P 0 0 0 —68.946 x 1072 0 0

207.82 0.3177 8166 3224 0.24 2370
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For type 3 FGM cylinder, V¥, (k = 1,2) represents the volume fraction of stainless steel and V£, (k = 1,2)
represents the volume fraction of silicon nitride. For type 4 FGM cylinders, V%, (k = 1,2) represents the
volume fraction of stainless steel and V¥ (k =1,2) represents the volume fraction of silicon nitride.
Therefore, the variations of V¥ and V%, (k = 1,2) with radial position z in the thickness direction are
opposite to that for type 3 FGM cylinder.

4. Numerical examples
4.1. Computational procedure

First, an FGM cylinder is divided into N elements. For each element, the material constant matrix ¢ and
mass density p of surfaces can be obtained by using known functions about the thickness, and matrices A;,
A?, M, M, can be obtained as shown in Appendix and the work of Xi et al. (1999). The matrices M, B;; can
be obtained by overlapping the matrices A;, A?, M, My of the neighboring cylinder elements, in the same
way as the finite element method. For a step-impact force, the frequencies and the corresponding left and
right eigenvectors can be obtained by solving equation for various wave number k. Using Eq. (32), we can
obtain the displacement vector in the Fourier transformation domain. Finally, the displacement response
can be obtained by using Eq. (34) and the FFT.

4.2. Calculated results and discussion

In the calculations, the following dimensionless parameters are used:

X Ci cw e _ wh c _r
X:—7 EU_ éj7 w: 44 s ﬁ: 44 w:—7 s = ﬂ7 r:—7
H Cyy qoRa qoR> Cs Pe H
=L =t /H (45)

where ¢y, and p, stand for the reference material constant and mass density. Here, they are equal to the
material constant c44 and mass density on the inner surface of the cylinder under consideration.

The incident wavelet is assumed to be a radial line load acting on the outer surface of the cylinder. The
time history of the incident wavelet is given as

sin(2mt/ty), 0 <t <ty,

S = { 0, t<0 and >ty (46)

where #4 is the time duration of the incident wavelet and w, = 2m/t4. In this paper, we set 7y = 2. It means
that the wavelet is one cycle of the sine function.

Using the Duhamel integral and viewing Eq. (32), we can get the displacement in the Fourier trans-
formation domain under a sine line load

i/[: @];1(11905 (o sin (o) — o, sin(w;t))

) 0 <1<y,
~ m=1 <w§n — cofz-)mem
WD =1 0 oL 08 () = on)sinl(o) + )t — 001 ~ (0, + o) sinflw, ~ on)c + o)l
mgl QLM oR (w; - wﬁl) W ‘
)

To validate the present formulation and numerical implementation, the displacement response on the
surface of the SiC-C plate to a sine function line load on the upper surface of the plate is first studied. The
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SiC-C plate is made from combining material SiC and C using a chemical vapor deposition technique. The
material properties of this plate can be written as a quadratic function of thickness z (Liu et al., 1999b):

E = Ap + Bgz + Ci??, (48)

p=4A4,+Bz+C2, (49)

where E is Young’s modulus and p is the mass density of the SiC—C FGM plate. Here, Ay = 2.62, By =
0.00, and Cp =28.78; 4, = 1.80, B, =0.01 and C, = 1.42; E = Elconst, p = p/p, and const = 9.68 GPa
and, p, = 1000 kg/m*. A comparison of the result provided by the present paper and that previously ob-
tained by Liu et al. (1991b, 1999b) is shown in Fig. 2. A good agreement between these two results is
observed. Besides, this example is also used for convergence study to find the number of elements required
for analyses. In this case, the present results are obtained with 20 and 25 elements. It can be seen from this
figure that with 20 elements, the result is converged to a very good degree of accuracy. Unless otherwise
specified, the cylinders are divided into 20 elements radially in the subsequent calculations.

Next, the responses of four types of FGM cylinders are studied. Two ratios of the inner radius to
thickness, R|/H = 1 and R, /H = 20, are employed in calculations; the former is viewed as a thick cylinder,
whereas the latter is viewed as a cylindrical shell.

Since the square of w,, is in the denominator of Eq. (47), the value of the fraction decreases rapidly with
increasing the order of modes, and very accurate results may be achieved using a few lowest modes in the
practical calculation. Fig. 3 shows the time history of the displacement on the outer surface of the type 1
cylindrical shell. The results are obtained using different numbers of modes. It can be seen from this figure
that the result obtained using the first eight modes is almost the same as that obtained using the first 14
modes. Therefore, the first eight modes are used in the following calculations.

Figs. 4 and 5 show the time history of the displacement # on the outer surface of the type 1 for cylinder
and cylindrical shell, respectively. A comparison of the displacement responses between various values of
the power law exponent # is presented. It is observed from Figs. 4 and 5 that the peak value of displacement
response of type 1 increases as the power law exponent » increases. This can be explained as follows. Type 1
holds silicon nitride material properties on the inner surface and stainless-steel material properties on the
outer surface. Small values of n correspond to a large volume fraction of stainless steel, whereas large values

0.08,

0.06f — Present method
+ Liuetal. (1999B

0.04f

0.02p

=

-0.02r

-0.04

-0.06p

Fig. 2. The time history of the displacement at x = SH on the upper surface on the SiC-C FGM plate excited by an incident wave of
one cycle of sine function at x = 0.
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Fig. 3. A comparison of displacement responses at x = 10H on the outer surface of type 1 cylindrical shell (n = 2.0) excited by an
incident wave at x = 0.

0.15 w \ :

0.1

0.05

=|

r

Fig. 4. Time history of the displacement at x = 10H on the outer surface of type 1 cylinder (R, = H) excited by an incident wave at
x=0.

of n correspond to a large volume fraction of silicon nitride as shown in Eq. (42). The peak value of the
displacement is #max (hick) = 0.1318 in Fig. 4 and it iS #max (min) = 0.008838 in Fig. 5. We can calculate the

ratio:
Umax (thin) __ 0.008838 x 21

ratio = — -
Umax (thick) 0.1318 x 2

=0.704. (50)
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=|

=1

Fig. 5. Time history of the displacement at x = 10H on the outer surface of type 1 cylindrical shell (R, = 20H) excited by an incident
wave at x = 0.

It can be found that the peak value of the displacement response in cylindrical shell is less than that for
cylinder.

Figs. 6 and 7 show the time history of the displacement # on the outer surface of the type 2 for thick
cylinder and cylindrical shell, respectively. A comparison of the displacement response between various
values of the power law exponent 7 is presented. It is obvious that the constituent volume fraction of type 2
is opposite to that of type 1, and thus, the power law exponent n influences conversely the displacement
response of type 2. This can be explained as follows. Type 2 holds silicon nitride material properties on the
outer surface and stainless-steel material properties on the inner surface. Large values of n correspond to a

~|

Fig. 6. Time history of the displacement at x = 5H on the outer surface of type 2 cylinder (R; = H) excited by an incident wave atx = 0.
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14 T T T

<|

r
Fig. 7. Time history of the displacement at x = 5H on the outer surface of type 2 cylindrical shell (R, = 20H) excited by an incident
wave at x = 0.

large volume fraction of stainless steel, whereas small values of n correspond to a large volume fraction of
silicon nitride as shown in Eq. (42).

Figs. 8 and 9 show the time history of displacement response on the outer surface of type 3 cylinder and
cylindrical shell for the different constituent volume fraction varying with the power law exponent n, re-
spectively. Comparing Figs. 8 and 9 with Figs. 4 and 5, it can be easily found that the variation of the
displacement response with the value of n for type 3 is somewhat similar to that for type 1. The slight
difference between the displacement response of types 1 and 3 is that the peak value of the response of type

0.1

0.05

<

-0.05

015 s s s
0 5 10 15 20

r

Fig. 8. Time history of the displacement at x = 10H on the outer surface of type 3 cylinder (R, = H) excited by an incident wave at
x=0.
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<|

Fig. 9. Time history of the displacement at x = 10H on the outer surface of type 3 cylindrical shell (R, = 20H) excited by an incident
wave at x = 0.

3 is less than that of type 1 from comparing Figs. 4 and 8. In this case, the peak value of type 3 cylinder is
Umax (type 3) = 0.1071 and less than the peak value of type 1 cylinder which is #imax (iype 1) = 0.1318. Figs. 10
and 11 show the time history of displacement response on the outer surface of type 4 cylinder and cylin-
drical shell for the different constituent volume fraction varying with the power law exponent 7, respec-
tively. From these results, it can be found that the type 3 and 4 have better properties for attenuation of the
displacement response induced by the same source of excitation.

0.1 T T T

0.05

-0.15 : : :
0 5 10 15 20

~1

Fig. 10. Time history of the displacement at x = SH on the outer surface of type 4 cylinder (R, = H) excited by an incident wave at
x=0.
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=|

t

Fig. 11. Time history of the displacement at x = SH on the outer surface of type 4 cylindrical shell (R, = 20H) excited by an incident
wave at x = 0.

5. Conclusions

HNM is presented for analyzing the displacement response of FGM cylinder excited by transient
sources. This method combines the finite element method with the method of Fourier transforms. The
material properties of each element are assumed to vary in the thickness direction, and it can give more
accurate results for FGM. Moreover, this method reduces the spatial dimensions of the original problem by
1. As it adopts unidirectional nodal line numbering, it yields the minimum matrix bandwidth and requires
much less computer memory and time.

Four types of FGM cylinders composed of stainless steel and silicon nitride are taken into account in
this paper, and both cylinder and cylindrical shell are also studied. The results show that the peak value of
displacement response on the outer surface in x axial of types 1, 3 and 4 increases as the power law ex-
ponent increases, and the peak value of displacement response is smaller of thin cylindrical shell. Type 3
and 4 FGM cylinder have better property for attenuation of the displacement response induced by the same
stress source of excitation.

Appendix
(%h,, + %r,,)D’3 (f%hn - %rn)D'3 (%hn + ér,,)D/3
Al = (3h, +5,)Dy  (—%h —2r,)D) |,
Sym (%h + %rn)Dg
A —4D'5 2D’5 ID’5 | c’HD'6 c’uD'6 C/BD;
+ ﬁ -6 —16D/5 —2D/5 + W C‘lzzI)/6 CIZ3D/6 s

sym 13D] sym s, Dj
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where

and

1 |Ack 0
D, =Ll - (L, = — ,
hn 2[ g n] ? hn 0 AC§3
1 110 0
D/ _ LT o _ L LT (OIS L) =—
5 2hn ( 2 [Cn Cn] 3 + 3 [cn cn] 2) h,, 0 AC’213 )

1

p el el =g

0 0
0 Acd,

¢, = 2[4k + T5htr, + 25017k + 3001 B2 4 12072k, — 30rIn (r, + h, )k’
— 18072 In (h, + 1)k — 3907 In (h, + r,)h> — 3607} In (h, + r,)h, — 1207 In(r,, + h,)
+ 1807210 (r,, )2 + 307, In (r,,) i + 36074 In () B, + 39072 In (1, )12 + 1207 In (r,,)],
¢, =4[k — 10hr, — 13021 — 2401212 — 120r,
+ 601210 (h, + 7r,)h + 2407 In (h, + )2 + 3007 In (A, + 1) B, + 1207 In (7, + )
— 6072 In (r,)i) — 3007 In (r,,)h, — 2407, In (r,,) > — 1207, In (7;,)],

¢\ = —2[k — Shir, — 70r2h — 180r k> — 1201} h, + 3072 In (h, + r,)h + 1507 In (h, + 7, k2
+ 24070 (h,, + 7,)hy, + 1207 In (1, + h,) — 3077 In(r, )i} — 24072 In (1, )h,
— 150r§ In (rn)hi — 120r3 In(r,)],

chy = 16[2h> — Shir, + 202 + 9012 k2 + 60rth, — 607> In (h, + r,) k2 — 120/ In (h,, + 7,)h,,
— 607> In(r,, + h,) + 12072 In (r,,) b, + 607, In (1, )2 + 607 In(7,,)],

chy = 4[5 — 12007, — 10121 — 1207212 + 601 In (B, + 1)K + 1807 In (hy, + 7, + 1201 In (:, + )

n-n

— 1807410 (7, )h, — 607 In (r,, )2 — 1207, In (r,)],

iy = 2[4k — Shir, + 10282 + 602 k2 + 120r%h, — 3072 In (h, + 7,)h, — 120/ In (B, + 1,)h,
— 1207210 (7, + h,) + 12072 In (r,) b, + 307 In (7, )22 4 1207 In (7,,)].

) —(hy + 41D} —4(h, +3r,)DY  (Sh, +6r,)D} ]
AY =35 | 40 +25)D5 —16(h, +1,)D;  —4(Th, + 8r,)D;
—(3hy + 4r,)Dy  4(5h, + 7r,)Dy  (23h, + 26r,)D) |
b [0ntanDr 2Dy Gy ]
+ i 16(hn + Vn)Dlzﬁ 2(2hn + ’”n)D/ZN
sym —(23h, + 26r,)D”
hﬁ _DZ B D:‘” //O " DZ/I/ B D:/‘l”
+30 16(D; — DY) 4(Dy D) |,
sym 7(Dy — D)
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where
1 1 0 Ac, + A"
D’ = — (LT7¢° — ALy + LT7e° — L)) = — 13 15
2 2hn ( 1 [cn cn] 2 + 2 [cn cn] 1) hn ACT3 + AC’f5 0 ?
D”:L(LT[cofcI]L +LT[cofcI]L ) :L 0 ACTZ
4 2h, 1% nl3 3 1% nl -1 2h, Ac'fz 0 ’
1 1 0 A
D" = — LT — AL, = — 13
2 hn 1 [cn cn] 2 hn AC§5 0 )
1 1[0 Acf
m_ L yTr,0 I _ 12
D4 - hn Ll [Cn Cn]L3 hn |:0 0 :| )
o [@h+ 700D 4D, —(5hy + Tr,)D,
Al = 0 16(4h, + Tr,)D,  4(6h, + 7r,)D, |,
sym (44h, + 49r,)D),
where
1 1 [Ac?, O
D/ _ _LT o _ I L =— 11
1 hn l[cn Cn] 1 hn |: 0 Acgs ?
L a, [@ T i —(Shy + Tr)I
My = Pn 16(4h, + Tr,)1 4(6h, + Tr,)1
sym (44h, + 49r,)1
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